1. Solution manifolds in Jet space and its local diffeomorphic transformation

Let M be an open subset of \mathbb{R}^{n} or more generally N-manifold, $F=\left(F_{1}, \ldots, F_{l}\right)$ be a system of \mathcal{C}^{∞} functions for positive integers $l<N$ and \mathcal{S}_{F} be a zero set of $F=\left\{x \in \mathbb{R}^{N}: F_{1}(x)=\cdots=F_{l}(x)=0\right\}$. Assume F is of maximal rank on \mathcal{S}_{F} i.e. $\left(\frac{\partial F_{\nu}}{\partial x_{\mu}}\right)$ is of rank l or equivalently $d F_{1}, \ldots, d F_{l}$ are linearly independent on \mathcal{S}_{F}. Then \mathcal{S}_{F} is a \mathcal{C}^{∞} manifold.

Proposition 1.1. A smooth function f is defined on $M . f$ vanishes on \mathcal{S}_{F} if and only if $f=Q_{1} F_{1}+\cdots+Q_{l} F_{l}$ for some \mathcal{C}^{∞} functions Q_{1}, \ldots, Q_{l}, i.e. f belongs to the ideal generated by F_{1}, \ldots, F_{l} in the ring of \mathcal{C}^{∞} functions.

Let X be an open subset of \mathbb{R}^{p} and $U:=\left\{\left(u^{1}, \ldots, u^{q}\right)\right\}$ be an open set in \mathbb{R}^{q}. Suppose there is a function f such that $u:=f(x)$ for $x \in X$ and $u \in U$. The graph $\Gamma_{f}=\{(x, f(x)) \in X \times U\}$ is a p-dimensional submanifold of $X \times U$.
Let g be a local diffeomorphism $X \times U \rightarrow X \times U$. We let

$$
g\left(\Gamma_{f}\right)=\left\{(\tilde{x}, \tilde{u})=g(x, u):(x, u) \in \Gamma_{f}\right\}:=\Gamma_{\tilde{f}}
$$

Note that we consider only the infinitesimal transform of the identity component so that the graph of the function $u=f(x)$ is transformed by a diffeomorphism g to define graph of another function $\tilde{u}=\tilde{f}(\tilde{x})$. We write

$$
g \circ f:=\tilde{f}
$$

, which we call the transform of f by g.
Example 1.2. Let $p=q=1, X=\mathbb{R}$ and $G=S O(2)^{1}$. Take the rotation $\Theta \in$ G as our diffeomorphic transformation. Then $\Theta(x, u)=(x \cos \theta-u \sin \theta, x \sin \theta+$ $u \cos \theta)=(\tilde{x}, \tilde{u})$. Consider the graphs $u=a x+b=f(x)$. Substituting $u=$ $-\tilde{x} \sin \theta+\tilde{u} \cos \theta$ and $x=\tilde{x}+\tilde{u} \sin \theta$ for $u=a x+b$, we have the graph $\tilde{u}=$ $\frac{a \cos \theta+\sin \theta}{\cos \theta-a \sin \theta} \tilde{x}+b:=\tilde{f}(\tilde{x})$.

Definition 1.3. For $x \in\left(x^{1}, \ldots, x^{p}\right) \in X$ and $u \in\left(u^{1}, \ldots, u^{q}\right) \in U$, the n-th jet space of $X \times U$ is

$$
X \times U^{(n)}:=\left\{\left(x, u^{(n)}\right)\right\}
$$

, which is endowed with Euclidean structure and smooth topology.
Definition 1.4. Given a system of partial differential equations of order n

$$
\Delta_{\nu}\left(x, u^{(n)}=0, \quad \nu=1,2, \ldots, l\right.
$$

, where $\Delta=\left(\Delta_{1}, \ldots, \Delta_{l}\right)$, the system of \mathcal{C}^{∞} functions defined on $X \times U^{(n)}$, We define

$$
\mathcal{S}_{\Delta}:=\text { zero set of } \Delta \text { i.e. }\{\Delta=0\} .
$$

Remark 1.5. We only consider the case for which \mathcal{S}_{Δ} is smooth manifold i.e. $d \Delta_{1}, \ldots, d \Delta_{l}$ is of maximal rank.

[^0]Hence we have the following equivalent notions.

$$
\begin{array}{ll}
& u=f(x) \text { is a solution of } \Delta=0 \\
\Longleftrightarrow \quad & \Delta_{\nu}\left(x, f^{(n)}(x)\right)=0, \quad \nu=1,2, \ldots, l \\
\Longleftrightarrow \quad & \left(x, f^{(n)}(x)\right) \in \mathcal{S}_{\Delta} . \tag{1.3}
\end{array}
$$

2. Prolongation of vector fields and infinitesimal symmetries

2.1. Prolongation of local diffeomorphisms.

Definition 2.1. Let M be an open subset of $X \times U$ and g a local diffeomorphism $M \rightarrow M$. Then $\mathrm{pr}^{n} g: M^{(n)} \rightarrow M^{(n)}$, the n-th prolongation of g on $M^{(n)}=\left\{\left(x, u^{(n)}\right):(x, u) \in M\right\}$ is defined as follows. For all $\left(x_{0}, u_{0}^{(0)}\right) \in M^{(n)}$, take any function $u=f(x)$ such that $\left(x_{0}, f^{(n)}\left(x_{0}\right)\right)=\left(x_{0}, u_{0}^{(n)}\right)$ and let $\tilde{u}(\tilde{x})=(g \circ f)(\tilde{x})$. Then

$$
\operatorname{pr}^{n} g\left(x_{0}, u_{0}^{(n)}\right):=\left(\tilde{x_{0}}, \tilde{u_{0}}{ }^{(n)}\left(\tilde{x_{0}}\right)\right)
$$

, where $\left(\tilde{x_{0}}, \tilde{u_{0}}\right)=g\left(x_{0}, u_{0}\right)$. This is well-defined i.e. independent of choice of f.
Remark 2.2. In (x, u) space, 1 -jet of $u=f(x)$ may be considered as slopes of some line elements in its graph. Transform image of this graph by a local diffromorphism g is put $\tilde{u}=\tilde{f}(\tilde{x})$ in new coordinates. Calculate the slopes of this new graph. The process of assigning new slopes to old slopes when the graph is being transformed by g is 1 st prolongation of g in naive sense.
2.2. Prolongation of group actions. Let G be a local group of transformation acting on M. Then $\mathrm{pr}^{n} G:=\left\{\mathrm{pr}^{n} g: g \in G\right\}$ acts on $M^{(n)}$.

Example 2.3. Example1.2 continued. Suppose that $\mathrm{pr}^{1} \Theta: X \times U^{(1)} \rightarrow X \times$ $U^{(1)}$ sends $\left(x_{0}, u_{0}, u_{0}^{\prime}\right) \rightarrow\left(\tilde{x}, \tilde{u}, \tilde{u}^{\prime}\right)$. Then $\operatorname{pr}^{1} \theta\left(x_{0}, u_{0}, u_{0}^{\prime}\right)=\left(x_{0} \cos \theta-u_{0} \sin \theta, x_{0} \sin \theta+\right.$ $\left.u \cos \theta, \frac{u_{0}^{\prime} \cos \theta+\sin \theta}{\cos \theta-u_{0}^{\prime} \sin \theta}\right)$. Dropping 0 subscripts we have generally

$$
\operatorname{pr}^{1} \theta\left(x, u, u^{\prime}\right)=\left(x \cos \theta-u \sin \theta, x \sin \theta+u \cos \theta, \frac{u_{x} \cos \theta+\sin \theta}{\cos \theta-u_{x} \sin \theta}\right)
$$

2.3. Prolongation of Vector fields.

Definition 2.4. Let M be an open subset of $X \times U$. Let V be an vector field on M and $\varphi_{\varepsilon}:=\exp (\varepsilon V)$ is 1 parameter group of local diffeomorphisms, which are flows. Then the prolongation of vector field $V, \mathrm{pr}^{n} V$ is a vector field on $M^{(n)}$ defined by

$$
\operatorname{pr}^{n} V\left(x, u^{(n)}\right)=\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0} \operatorname{pr}^{n}(\exp \varepsilon V)\left(x, u^{(n)}\right)
$$

Example 2.5. Let $p=q=1, X=\mathbb{R}$ and $V=-u \frac{\partial}{\partial x}+x \frac{\partial}{\partial u}$. Then $\exp (\varepsilon V)$ is a rotation by angle ε which is calculated as follows. Noting $V=(-u, x)$,

$$
\binom{\dot{x}}{\dot{u}}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\binom{x}{u} .
$$

The solution is

$$
\binom{x(\varepsilon)}{u(\varepsilon)}=e^{\varepsilon A}\binom{x(0)}{u(0)}
$$

where $A=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ and

$$
e^{\varepsilon A}=I+\varepsilon A+\frac{\varepsilon^{2}}{2} A^{2}+\cdots=\left(\begin{array}{cc}
\cos \varepsilon & -\sin \varepsilon \\
\sin \varepsilon & \cos \varepsilon
\end{array}\right) .
$$

Its action on jets is given by

$$
\begin{aligned}
\operatorname{pr}^{1} V\left(x, u, u_{x}\right) & =\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0} \operatorname{pr}^{1} \exp (\varepsilon V)\left(x, u, u_{x}\right) \\
& =\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0}\left(x \cos \varepsilon-u \sin \varepsilon, x \sin \varepsilon+u \cos \varepsilon, \frac{u_{x} \cos \varepsilon+\sin \varepsilon}{\cos \varepsilon-u_{x} \sin \varepsilon}\right) \\
& =\left(-u, x, 1+u_{x}^{2}\right)
\end{aligned}
$$

Hence $\mathrm{pr}^{1} V=-u \frac{\partial}{\partial x}+x \frac{\partial}{\partial u}+\left(1+u_{x}^{2}\right) \frac{\partial}{\partial u_{x}}$.
Example 2.6. Given $u(x, y)$ and Laplace equation $u_{x x}+u_{y y}=0$. 2nd jet space is $\left\{\left(x, y, u, u_{x}, u_{y}, u_{x x}, u_{x y}, u_{y y}\right)\right\} \subset X \times U^{(2)} \subset \mathbb{R}^{8}$. Let the equation be $\Delta\left(x, u^{(2)}\right):=u_{x x}+u_{y y}=0$ then $\mathcal{S}_{\Delta}=\{\Delta=0\}$ is a hypersurface since Δ is of maximal rank on its zero set with the $\operatorname{Jacobian}(0, \ldots, 0, \underbrace{1}_{6 t h}, 0,1)$.

2.4. Symmetry groups of partial differential equations.

Definition 2.7. Let G be a local group of transformations acting on $X \times U$ and $\Delta=0$ with $\Delta=\left(\Delta_{1}, \ldots, \Delta_{l}\right)$ be a system of partial differential equations of order n. G is a symmetry group of $\Delta=0$ if $\mathrm{pr}^{n} g$ sends \mathcal{S}_{Δ} into \mathcal{S}_{Δ} for every $g \in G$ or equivalently,

$$
\operatorname{pr}^{n} V\left(\Delta_{\nu}\right)=0 \text { on } \mathcal{S}_{\Delta}
$$

for every $\nu=1,2, \ldots, l$ and every infinitesimal generator V of G.
Definition 2.8. By a differential function of order k we mean a \mathcal{C}^{∞} function $P\left(x, u^{(n)}\right)$ defined on an open subset of $X \times U^{(n)}$. By the total derivative of P we mean

$$
D_{i} P=D_{x_{i}}:=\frac{\partial P}{\partial x_{i}}+\sum_{\substack{\alpha=1, \ldots, q \\|J| \leq n}} \frac{\partial P}{\partial u_{J}^{\alpha}} u_{J, i}^{\alpha} .
$$

The total derivative of P is a differential function of order $n+1$.
Example 2.9. Let $u(x, y)$ be defined on \mathbb{R}^{2} then a tota derivative

$$
D_{x}\left(x u+u_{x}+u_{y}^{2}\right)=u+x U_{x}+u_{x x}+2 u_{y} u_{x y}
$$

[^0]: ${ }^{1} O(2)$ has two components with the signature of the determinant $\pm 1 . S O(2)$ is the identity component of the two.

