Lecture 07

1. Solution manifolds in Jet space and its local diffeomorphic transformation

Let M be an open subset of \mathbb{R}^n or more generally N-manifold, $F = (F_1, \ldots, F_l)$ be a system of \mathcal{C}^{∞} functions for positive integers l < N and \mathcal{S}_F be a zero set of $F = \{x \in \mathbb{R}^N : F_1(x) = \cdots = F_l(x) = 0\}$. Assume F is of maximal rank on \mathcal{S}_F i.e. $\left(\frac{\partial F_{\nu}}{\partial x_{\mu}}\right)$ is of rank l or equivalently dF_1, \ldots, dF_l are linearly independent on \mathcal{S}_F . Then \mathcal{S}_F is a \mathcal{C}^{∞} manifold.

PROPOSITION 1.1. A smooth function f is defined on M. f vanishes on S_F if and only if $f = Q_1F_1 + \cdots + Q_lF_l$ for some C^{∞} functions Q_1, \ldots, Q_l , i.e. f belongs to the ideal generated by F_1, \ldots, F_l in the ring of C^{∞} functions.

Let X be an open subset of \mathbb{R}^p and $U := \{(u^1, \ldots, u^q)\}$ be an open set in \mathbb{R}^q . Suppose there is a function f such that u := f(x) for $x \in X$ and $u \in U$. The graph $\Gamma_f = \{(x, f(x)) \in X \times U\}$ is a p-dimensional submanifold of $X \times U$. Let g be a local diffeomorphism $X \times U \to X \times U$. We let

$$g(\Gamma_f) = \{ (\tilde{x}, \tilde{u}) = g(x, u) : (x, u) \in \Gamma_f \} := \Gamma_{\tilde{f}}.$$

Note that we consider only the infinitesimal transform of the identity component so that the graph of the function u = f(x) is transformed by a diffeomorphism gto define graph of another function $\tilde{u} = \tilde{f}(\tilde{x})$. We write

$$g\circ f:=\tilde{f}$$

, which we call the *transform* of f by g.

EXAMPLE 1.2. Let p = q = 1, $X = \mathbb{R}$ and $G = SO(2)^1$. Take the rotation $\Theta \in G$ as our diffeomorphic transformation. Then $\Theta(x, u) = (x \cos \theta - u \sin \theta, x \sin \theta + u \cos \theta) = (\tilde{x}, \tilde{u})$. Consider the graphs u = ax + b = f(x). Substituting $u = -\tilde{x} \sin \theta + \tilde{u} \cos \theta$ and $x = \tilde{x} + \tilde{u} \sin \theta$ for u = ax + b, we have the graph $\tilde{u} = \frac{a \cos \theta + \sin \theta}{\cos \theta - a \sin \theta} \tilde{x} + b := \tilde{f}(\tilde{x})$.

DEFINITION 1.3. For $x \in (x^1, \ldots, x^p) \in X$ and $u \in (u^1, \ldots, u^q) \in U$, the *n*-th jet space of $X \times U$ is

$$X \times U^{(n)} := \{(x, u^{(n)})\}$$

, which is endowed with Euclidean structure and smooth topology.

DEFINITION 1.4. Given a system of partial differential equations of order n

$$\Delta_{\nu}(x, u^{(n)} = 0, \quad \nu = 1, 2, \dots, l$$

, where $\Delta = (\Delta_1, \ldots, \Delta_l)$, the system of \mathcal{C}^{∞} functions defined on $X \times U^{(n)}$, We define

$$\mathcal{S}_{\Delta} := \text{ zero set of } \Delta \text{ i.e. } \{\Delta = 0\}.$$

REMARK 1.5. We only consider the case for which S_{Δ} is smooth manifold i.e. $d\Delta_1, \ldots, d\Delta_l$ is of maximal rank.

 $^{{}^{1}}O(2)$ has two components with the signature of the determinant ±1. SO(2) is the identity component of the two.

Hence we have the following equivalent notions.

(1.1)
$$u = f(x)$$
 is a solution of $\Delta = 0$

(1.2)
$$\iff \quad \Delta_{\nu}(x, f^{(n)}(x)) = 0, \quad \nu = 1, 2, \dots, l$$

(1.3)
$$\iff (x, f^{(n)}(x)) \in \mathcal{S}_{\Delta}.$$

2. Prolongation of vector fields and infinitesimal symmetries

2.1. Prolongation of local diffeomorphisms.

DEFINITION 2.1. Let M be an open subset of $X \times U$ and g a local diffeomorphism $M \to M$. Then $\operatorname{pr}^n g : M^{(n)} \to M^{(n)}$, the *n*-th prolongation of g on $M^{(n)} = \{(x, u^{(n)}) : (x, u) \in M\}$ is defined as follows. For all $(x_0, u_0^{(0)}) \in M^{(n)}$, take any function u = f(x) such that $(x_0, f^{(n)}(x_0)) = (x_0, u_0^{(n)})$ and let $\tilde{u}(\tilde{x}) = (g \circ f)(\tilde{x})$. Then

$$\mathsf{pr}^n g(x_0, u_0^{(n)}) := (\tilde{x_0}, \tilde{u_0}^{(n)}(\tilde{x_0}))$$

, where $(\tilde{x_0}, \tilde{u_0}) = g(x_0, u_0)$. This is well-defined i.e. independent of choice of f.

REMARK 2.2. In (x, u) space, 1-jet of u = f(x) may be considered as slopes of some line elements in its graph. Transform image of this graph by a local diffromorphism g is put $\tilde{u} = \tilde{f}(\tilde{x})$ in new coordinates. Calculate the slopes of this new graph. The process of assigning new slopes to old slopes when the graph is being transformed by g is 1st prolongation of g in naive sense.

2.2. Prolongation of group actions. Let G be a local group of transformation acting on M. Then $pr^n G := \{pr^n g : g \in G\}$ acts on $M^{(n)}$.

EXAMPLE 2.3. Example1.2 continued. Suppose that $\operatorname{pr}^1\Theta: X \times U^{(1)} \to X \times U^{(1)}$ sends $(x_0, u_0, u'_0) \to (\tilde{x}, \tilde{u}, \tilde{u}')$. Then $\operatorname{pr}^1\theta(x_0, u_0, u'_0) = (x_0 \cos \theta - u_0 \sin \theta, x_0 \sin \theta + u \cos \theta, \frac{u'_0 \cos \theta + \sin \theta}{\cos \theta - u'_0 \sin \theta})$. Dropping 0 subscripts we have generally

$$\mathsf{pr}^{1}\theta(x, u, u') = (x\cos\theta - u\sin\theta, x\sin\theta + u\cos\theta, \frac{u_{x}\cos\theta + \sin\theta}{\cos\theta - u_{x}\sin\theta})$$

2.3. Prolongation of Vector fields.

DEFINITION 2.4. Let M be an open subset of $X \times U$. Let V be an vector field on M and $\varphi_{\varepsilon} := \exp(\varepsilon V)$ is 1 parameter group of local diffeomorphisms, which are *flows*. Then the prolongation of vector field V, $\mathsf{pr}^n V$ is a vector field on $M^{(n)}$ defined by

$$\operatorname{pr}^{n}V(x, u^{(n)}) = \left. \frac{d}{d\varepsilon} \right|_{\varepsilon=0} \operatorname{pr}^{n}(\exp \varepsilon V)(x, u^{(n)}).$$

EXAMPLE 2.5. Let p = q = 1, $X = \mathbb{R}$ and $V = -u\frac{\partial}{\partial x} + x\frac{\partial}{\partial u}$. Then $\exp(\varepsilon V)$ is a rotation by angle ε which is calculated as follows. Noting V = (-u, x),

$$\left(\begin{array}{c} \dot{x} \\ \dot{u} \end{array}\right) = \left(\begin{array}{c} 0 & -1 \\ 1 & 0 \end{array}\right) \left(\begin{array}{c} x \\ u \end{array}\right).$$

The solution is

$$\left(\begin{array}{c} x(\varepsilon) \\ u(\varepsilon) \end{array}\right) = e^{\varepsilon A} \left(\begin{array}{c} x(0) \\ u(0) \end{array}\right)$$

3

where
$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
 and
 $e^{\varepsilon A} = I + \varepsilon A + \frac{\varepsilon^2}{2} A^2 + \dots = \begin{pmatrix} \cos \varepsilon & -\sin \varepsilon \\ \sin \varepsilon & \cos \varepsilon \end{pmatrix}$

Its action on jets is given by

$$pr^{1}V(x, u, u_{x}) = \frac{d}{d\varepsilon}\Big|_{\varepsilon=0} pr^{1} \exp(\varepsilon V)(x, u, u_{x})$$
$$= \frac{d}{d\varepsilon}\Big|_{\varepsilon=0} (x \cos \varepsilon - u \sin \varepsilon, x \sin \varepsilon + u \cos \varepsilon, \frac{u_{x} \cos \varepsilon + \sin \varepsilon}{\cos \varepsilon - u_{x} \sin \varepsilon})$$
$$= (-u, x, 1 + u_{x}^{2}).$$

Hence $\operatorname{pr}^1 V = -u \frac{\partial}{\partial x} + x \frac{\partial}{\partial u} + (1 + u_x^2) \frac{\partial}{\partial u_x}$.

EXAMPLE 2.6. Given u(x, y) and Laplace equation $u_{xx} + u_{yy} = 0$. 2nd jet space is $\{(x, y, u, u_x, u_y, u_{xx}, u_{xy}, u_{yy})\} \subset X \times U^{(2)} \subset \mathbb{R}^8$. Let the equation be $\Delta(x, u^{(2)}) := u_{xx} + u_{yy} = 0$ then $\mathcal{S}_{\Delta} = \{\Delta = 0\}$ is a hypersurface since Δ is of maximal rank on its zero set with the Jacobian $(0, \ldots, 0, 1, 0, 1)$.

2.4. Symmetry groups of partial differential equations.

DEFINITION 2.7. Let G be a local group of transformations acting on $X \times U$ and $\Delta = 0$ with $\Delta = (\Delta_1, \ldots, \Delta_l)$ be a system of partial differential equations of order n. G is a symmetry group of $\Delta = 0$ if $\operatorname{pr}^n g$ sends \mathcal{S}_Δ into \mathcal{S}_Δ for every $g \in G$ or equivalently,

$$\operatorname{pr}^n V(\Delta_\nu) = 0 \text{ on } \mathcal{S}_\Delta$$

for every $\nu = 1, 2, \dots, l$ and every infinitesimal generator V of G.

DEFINITION 2.8. By a differential function of order k we mean a \mathcal{C}^{∞} function $P(x, u^{(n)})$ defined on an open subset of $X \times U^{(n)}$. By the *total derivative* of P we mean

$$D_i P = D_{x_i} := \frac{\partial P}{\partial x_i} + \sum_{\substack{\alpha=1,\dots,q\\|J| \le n}} \frac{\partial P}{\partial u_J^{\alpha}} u_{J,i}^{\alpha}.$$

The total derivative of P is a differential function of order n + 1.

EXAMPLE 2.9. Let u(x, y) be defined on \mathbb{R}^2 then a tota derivative

$$D_x(xu + u_x + u_y^2) = u + xU_x + u_{xx} + 2u_yu_{xy}$$